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Abstract 

n several papers genetic binding sites were analyzed using a Shannon information theory 
approach.  It was recently[ ]1  claimed that these regulatory sequences could increase 

information content through evolutionary processes starting from a random DNA sequence, 
for which a computer simulation was offered as evidence. However, incorporating neglected 
cellular realities and using biologically realistic parameter values invalidate this claim. The 
net effect over time of random mutations spread throughout genomes is an increase in 
randomness per gene and decreased functional optimality. Structurally and quantitatively 
invalid scenarios characterize such evolutionary simulations as will be demonstrated here.  

Background 

Living organisms undergo non-random physical and chemical processes with apparent 
purpose, behavior not typical of inanimate matter. The growth of a seed, repair of a wound, 
digestion, replication of cells and so on, are performed reproducibly, with machine-like 
accuracy, and are necessary for survival. The scientist and layman recognizes at least 
intuitively the existence of ‘information’ as driving chemical and physical processes in 
manners necessary for life to be possible. 

Since mutations randomize a genome over time, the question arises how a genetic code to 
store and process guiding information could arise. Further increases in specified complexity, 
as required of evolutionary models, to generate novel biological structures and chemical 
processes pose a major difficulty. Dr. Schneider, professor Dawkins and other evolutionist 
allies have chosen a biological example, the fine-tuning at DNA and RNA binding sites, and 
offer a computer program[ ]1  as evidence that the natural, randomizing course of events might 
be overcome. 

We shall examine the algorithm offered. One could write a computer program which "shows" 
that random natural processes would drive rocks from a quarry up a steep mountain in 
thousands of discrete steps, for every simulation run. One only has to use an unrealistic 
number of earthquakes and improperly model the effects not leading to our intended 
programming goal.  The details matter very much to determine the true net outcome, as we 
shall find with the program[ ]1  I am going to discuss. Overlooked details in such flawed 
simulations might not be obvious.  Vast number of unrealistically hard earthquakes would 
affect not only the movement of our rocks but the surrounding mountain would be 
systematically destroyed. 



A legitimate simulation must reflect what is being modelled with sufficient accuracy to justify 
decisions.  Analyzing the financial feasibility of investing in an industrial project under 
various scenarios would be invalid if income streams are falsely represented and not all costs 
are taken into account.  The true expected net outcome depends on the details.  The intention 
here is to provide some pedagogical guidance as to key factors which need to be incorporated 
realistically in developing models for evolutionary processes, to test the plausibility that 
random change plus reproductive advantage could explain various biological observations. 

A binding site consists of a sequence of bases (A,C,G,T/U) which serve as addresses or 
locations on DNA or RNA which specialized recognizer proteins can identify and bind to. 
Too short a sequence, perhaps AC, would lead to many false addresses. Requiring that a very 
long, specific sequence (AACAGTCGGTATC.. TGGATCTA...) be 100% correct would not 
be robust against mutations.  Hundreds of binding sites have been identified, such as[3]: 

Organism Regulatory Protein DNA Sequence Recognized 
Bacteria Lac repressor AATTGTGAGCGGATAACAATT 
Yeast GAL4 CGGAGGACTGTCCTCCG 
Drosophilia Krüppel AACGGGTTAA 
Mammals GATA-1 TGATAG 

Every position in the binding site need not have a specific base 100% of the time to permit 
correct identification of a binding location.  Ambiguity introduced by such inexactness can be 
compensated for by lengthening the sequence. 

Dr. Schneider writes[ ]1  that, ‘The ev model quantitatively addresses the question of how life 
gains information, a valid issue recently raised by creationists (R. Truman, 
http://www.trueorigin.org/dawkinfo.htm; 08-Jun-1999) but only qualitatively addressed by 
biologists)’. 

Mutations of an artificial “protein” were simulated with a computer program[ ]1 .  ‘The 
simulation begins with zero information and, as in naturally occuring genetic systems, the 
information measured in the fully evolved binding sites is close to that needed to locate the 
sites in the genome.’ ‘The purpose of this paper is to demonstrate that Rsequence can indeed 
evolve to match Rfrequency.’ 

Caution.  The reader must be warned that the simulation cannot be mapped to a real 
biological scenario.  ‘A small population (n=64) of “organisms” was created, each of which 
consisted of G = 256 bases of nucleotide sequence chosen randomly, with equal probabilities, 
from an alphabet of four characters (a, c, g, t).’ 

What might these 64 living and reproducing organisms, with a total and unchangeable genome 
1/4 the size of one typical gene, be?  Careful examination of the characteristics assumed in the 
simulation and references demonstrate these cannot be single nor multiple cell life forms, nor 
virus nor any known organism.  This prevents any kind of model validation. 

 

http://www.trueorigin.org/dawkinfo.htm


We read later on, ‘Given that gene duplication is common and that transcription and 
translation are part of the housekeeping functions of all cells, the program simulates the 
process of evolution of new binding sites from scratch.’  

Lets give this a little thought. 

Of course, no attempt was made to show where these miniscule organisms with full 
transcription and translation machinery came from, nor does the simulation address the 
production of new genes in any manner.  Let us play with the thought experiment anyway. 

If such an ancestor, with a genome even smaller than the current 256 bases were to duplicate a 
“gene", it would waste energy and available material producing unnecessary extra protein 
during its lifetime and while duplicating its genome. Replication time would be longer than 
for its competitors and would have greater risk of failure. Even presently unnecessary DNA 
ballast needed for evolutionary trials and error to produce only a novel binding site represents 
a significant reproductive disadvantage. This worthless material would represent several 
percent of the 256 bases assumed for the genome, a very considerable handicap. 

It is known [ ] [ ]145 146  that especially small genomes can shed chunks of unneeded DNA rapidly 
given that these members out-reproduce their competition. 

Since sexual reproduction is not meant, let us use the known mathematics of budding or binary 
fission reproduction[ ]144 : 

 

Suppose that only 1 of the 64 organisms eliminated or did not originally have a significant 
portion of junk not needed at the time and the remaining 63 continued trying to evolve a new 
binding site.  Suppose that instead of proportionally 10 minutes generation time on average the 
streamlined member and ancestors now reproduce 10 seconds faster.  The advantages of 
needing less energy, nutrients, less risk of interference with on-going cellular process, etc. 
we’ll approximate by using a selectivity factor s= 0.0167 (based on 10 / 600 seconds shortened 
generation time).  Since x0 = 1/64 = 0,0156, we obtain from the formula above: 

• After only 500 generations we do not have 64 members with superfluous DNA to 
evolve a new binding site, but one 1 survivor! 

•  After 680 generations her chances look dim: > 99.9% of the population no longer has 
the necessary DNA material for evolutionary experiments. 

Obviously, an unnecessary gene duplication to provide DNA to experiment on would 
introduce proportionally far more worthless DNA than needed for a binding site.  Those not 
suffering such a fate would be at yet a great reproductive advantage.  This is a critical 
oversight in the simulation( )1  which invalidates the whole exercise. 



Alternatively, a more complex, free-living organism might tolerate an unnecessary gene better, 
but such creatures could not possibly survive the mutation rate assumed[ ]1 , 1 base per 256 
throughout the whole genome, every generation. 

For many organisms it appears that about 30% of the predicted proteins are unrelated to others 
in its own proteome or that of other organisms[ ]4 and gene duplication is a rare phenomena 
commonly identified with various destructive disorders( )1 . 

Overview of Flaws in the Model 

Several flaws in the simulation disallow the conclusions claimed.  We read, ‘Then we need to 
apply random mutations and selection for finding the sites and against finding non-sites. 
Given these conditions, the simulation will match the biology at every point.’ [emphasis 
added].  This claim will be shown to be incorrect.  Objections #1 - #6 document that 
biologically unrealistic parameter values are assumed by the computer program, which render 
any claims that binding sites could develop by chance invalid. We next establish that the 
model does not simulate random evolutionary processes (objections #7 - #26 ) in any 
biologically reasonable manner. 

Biologically unrealistic parameter values are assumed.

Objection #1:  The mutation rate is unrealistically high.  ‘At every generation, each 
organism is subjected to one random point mutation in which the original base is obtained 
one-quarter of the time.  For comparison, HIV-1 reverse transcriptase makes about one error 
every 2000-5000 bases incorporated, only 10-fold lower than this simulation.’ 

This is a remarkable statement in light of what the authors referenced[ ]5  actually wrote:  ‘Our 
finding, that a limited number of mutations in the HIV genome after exposure to 5-OH-dC has 
a disproportionately large effect on viral lethality, substantiates the concept that the mutation 
frequency of HIV is close to the error threshold for the viability of the quasispecies.’[ ]6

[emphasis added].  References supporting this view were supplied[ ] [ ]7 8 .  Indeed, ‘most HIV 
virions in the blood appear to be nonviable.’[ ]9  The virus can only exist due to the huge 
number of HIV-1 copies produced in an infected individual, about 1010 virions per day[ ] [ ]10 11 , 
and hardly 64 members as in the simulation! 

Since ‘transcription and translation are part of the housekeeping function of all cells...’[ ]1 and 
the 64 organisms supposedly survive autonomously, it becomes increasingly mysterious what 
these creatures with such a miniscule genome and unheard of mutations rates could possibly 
be. 

There are reasons why these self-destructive mutation rates, which would rapidly accumulate, 
don’t occur in the biologically relevant double-stranded DNA:  ‘In particular, E. coli DNA 
methytransferase, formamidopyrimidine-DNA glycosidase, and endonuclease III fail to repair 
efficiently altered substrates when present in the DNA strand of an RNA-DNA hybrid.’[ ]5

 



When DNA is replicated, copying errors occur at about one per 108 to 109 nucleotide sites( )8 . 
Since in the article[ ]1  it is claimed a billion years would be sufficient for humans to evolve 
(presumably from some eukaryote-like, non-parasite organism), we need to postulate that a 
proto-yeast like organism is being alluded to.  Let us see where this takes us.  For the 13,478 
kb yeast (S. cerevisiae) genome[ ]12  comprising about 6217 ORFs (Open Reading Frames), ca. 
40% of the ORFs (i.e., 2497[ ]13  at the 1X10-10 p-level) have pressumed orthologues with the 
simplest multi-cell organism known[ ] [ ]13 14  and such proteins appear to be critical for survival. 
Then extrapolating backwards, the evolutionary common ancestor would have had a genome 
of at least 5.4 megabases with perhaps 2400 genes critical for survival, i.e., having virtually 
no room for error. 

The mutation rate of 1/256 used by the simulation indicates that proportionally 21094 random 
mutations per proto-yeast member on average would have occurred each generation! Many 
genes would be hit by 10 or more errors every generation (and the errors would multiply 
during somatic cell replacement in multicellular life forms during the following billion years). 
Error catastrophe would be inevitable. 

In the simulation all of these mutations are dedicated to a single goal.  This implies 
proportionally for the proto-yeast that 21094 mutations are dedicated to fine tuning one 
specific binding site every generation in every member, and all the individual point mutations 
are assumed to be flawlessly recognized by natural selection. Were this even remotely true 
one could easily dispense of simulations and offer empirical evidence. 

A spore-forming bacterium from the permian Salado Formation considered to be 250 million 
year old within the evolutionary dating framework was reported recently to have a complete 
16rDNA sequence of 99% similarity with current Bacillus marismortui.[ ]15   This would indicate 
a base-pair substitution rate < 10-10 per site per year, incongruent with the rate chosen by the 
simulation. 

Objection #2:  The proportion of selectively useful single point mutations assumed is 
unrealistically high.  The computer program used a twos complement “points” scheme, 
assigned to each of the 4 nucleotides for each possible position within the receptor sequence of 
length L = 6 (see Table 2).  Statistically, a point mutation on a random genome by these 
arbitrary rules (at either the DNA binding location or the protein represented by the weight 
matrix) would have the same chances of being positive or negative, to increase or decrease the 
viability of a genome.  The biological statement would be (depending on the tolerance used) 
that about 50% of any point mutations would generate an improved new binding relationship 
the very first generation, starting from a totally random genome, followed by disminishing 
returns thereafter (the absurdity of this implied assumption should be apparent).  The offspring 
then get flawlessly selected. 

Recalling that ‘Generation of the weight matrix integers from the nucleotide sequence gene 
corresponds to translation and protein folding in natural systems’[ ]1  it is unrealistic to assume 
half of all possible point mutations on a random genome would automatically allow a “better”, 
exactly L=6 bases long sequence, to be identified:  ‘Most single-base changes in promoters 
and ribosome binding sites decrease synthesis by 2- to 20-fold’ (Mulligan et al., 1984; 



Stormo, 1986).[ ]16   Random sequences, very far removed from a functional one, would continue 
generating non- functional sequences via random mutations >>99.9999... % of the time, and 
evolution cannot look ahead to select a suitable candidate. 

Cell regulator activities must occur at the correct location, and the simulation badly 
underestimates the effects mutations have. Dr. Schneider pointed out correctly elsewhere, 
‘With this theorem in hand we can begin to understand why, under optimal conditions, the 
restriction enzyme EcoRI cuts only at the DNA sequence 5' GAATTC 3’ even though there are 
4096 alternative sequences of the same length in random DNA. A general explanation of 
this and many other feats of precision has eluded molecular biologists.’[ ]17  [emphasis added]. 

Recall that a nucleic acid binding site is supposed to be evolving via random mutations, as 
well as the recognizer protein.  This must result in very precise three dimensional interactions 
which involve H-bonding, hydrophobic, and other stabilizing interactions.  For gene regulatory 
purposes, at least one more domain must be present in the protein, capable of interacting with 
the transcription machinery[ ]18 .  Finally, the rest of the protein must ensure all parts fit together 
geometrically by folding properly. These requirements must be met concurrently to a very 
high level of precision before any kind of Darwinian selection can be invoked, inconsistent 
with the computer program which assumes instant “improvement” starting from a random 
genome. 

In the discussion we shall see that a realistic estimate for the proportion of minimally 
functional to totally non-functional proteins is very small, on the order of 10-44. The 
proportion of acceptable gene sequences coding proteins can only be even lower. The 
simulation would have to stumble on an acceptable sequence of such unlikelihood, beginning 
with a random state, over countless generations, before any kind of selection could enter into 
play.  The approximately 50-50 chance assumed by the computer program is unjustifiable and 
gets evolutionary progress off to a roaring start precisely at the point where all evolutionary 
conceptual models have the greatest difficulty. 

Of the vast number of possible folded geometries, a miniscule subset, on the order of 10-44, 
would even have a properly folded topology[ ] [ ] [ ] [ ] [ ]19 20 21 22 23 within which the recognizer site 
would have to be developed.  Even should half of the 4 bases (A,C,G or T) be acceptable at 
every position of the mini-gene (to code for a stable folded protein), one expects for the 64 
member population in the simulation a probability of roughly 

64 X (0.5)125 = 1.5 X 10-36                                                                                 (1) 

per generation of obtaining the first candidate mini-protein (which is coded for by only 125 
base pairs according to the paper[ ]1 ) upon which natural selection would have a chance to start 
working.  Even assuming a generation time of 1 second, in 10 billion years (< 3.2 X1017

seconds) we’d have essentially zero chance of even getting started. 

This objection alone renders the whole exercise meaningless. 

 



Objection #3:  Countless point mutations are assumed to instantly provide reliable 
binding interactions.  Unlike the fictitious positive and negative integers used in the 
simulation, in earlier papers the weight matrix was derived using real data on functional sites( ) 10

[ ]143 .  Known binding sites were selected from genbank, lined up and the proportion of each of 
the 4 bases found at each position of a sequence was determined (see Appendix). 

Binding of a protein to DNA or RNA is rarely the simple matter implied by the computer 
program, but generally requires cooperation with other carefully crafted proteins( )11 . For 
example, transcription in eukaroytes is regulated by a group of gene-specific activator and 
repressor proteins[ ]24  at specific binding sites. Simulating the production of one recognizer 
member of such ensembles by random point mutations has not been justified nor validated as 
being biologically conceivable.  Instead, an arbitrary proportion of positive and negative 
integers in the computer program defined how to converge towards a short term goal 
flawlessly irrespective of any biological selective significance or stochastic effects. 

How is chance to know a random mutation would lead towards developing a binding 
interaction?  ‘Rsequence does not tell us anything about the physical mechanism a recognizer uses 
to contact the nucleic acid.’[ ]25

Lacking any intelligence to choose, 3 dimensional shapes on the regulatory protein must be 
generated to permit the exact binding with a specific DNA sequence, like a well-meshed 
machine.  That is why a methionine-carrying tNRA is able to identify a very short sequence on 
mRNA, AUG, and position a physically large m-RNA properly at the ribosome complex: it is 
due to the specialized geometry prepared at the ribosome’s P site.  There is nothing 
biologically remarkable about AUG alone.  Crystallographic, molecular modelling and cryo-
electron microscopy studies have shed insight as how such feats are possible.  Translating an 
mRNA strand one codon at a time requires the whole ribosome complex to act in a 
synchronized fashion, aptly described as a rachet-like mechanism[ ]26 .  The cell’s survival 
depends on ribosomes being able to locate the binding sites correctly[ ]( )27 12 . 

Exactly how polypeptides are supposed to be able to identify that a location is or will become 
a useful binding site is deemed irrelevant:  ‘As mentioned above, the exact form of the 
recognition mechanism is immaterial because of the generality of information theory.’[ ]1  Quite 
the contrary, for a realistic evolutionary simulation such physical details are critically relevant, 
and is a fatal oversight in the simulation. It is assumed random point mutations provide half 
the 64 member population with a 100% effective survival advantage, based on fine tuning of a 
single type of binding site under development. This is geometrically and thermodynamically 
unrealistic.  Developing such precise binding interactions, one random mutation at a time, has 
nothing to do with the mathematics of information theory and needs to be quantitatively 
simulated based on physical realities. Any assumption of recognizable Darwinian selectivity 
for the intermediate stages needs to be quantitatively justified. 

The requirements on recognizer and binding site are generally very stringent a must be close to 
perfect to be of any use whatsoever( )13 . 

 



Objection #4:  The rate of selection is unrealistically high. A standard textbook on cell 
biology reports[ ]28  the average times evolutionists assume are needed for one acceptable amino 
acid change per 100 in specific proteins. The fastest rate reported within the evolutionary 
model required 0.7 million years for fibrinopepetide, and the slowest was for Histone H4, with 
500 million years.  In another place we read, ‘only about one nucleotide pair in a thousand is 
randomly changed every 200,000 years.’ [ ]29

This is incompatible with Dr. Schneider’s claim that his simulation ‘is within the range of 
natural population change.’ The computer program required only 704 generations to create a 
new binding site type at exactly 16 positions on a genome with its novel recognizer protein
from scratch.  After adding up all the “points” at each possible binding site using the current 
weight matrix (and a cutoff score of -58), the 32 members scoring lowest (selectivity s 1 !) 
magnanimously discontinue their ancestors’ eons of hard evolutionary work.  The half having 
the less desirable status, due to a single point mutation, get pin-pointed every generation 704 
times in a row without exterminating the future of higher life forms. 

Since real world selection coefficients (based on major mutations and not mere single point 
mutations) are proposed to be on the order of 0,01[ ]30  or less, one would expect some 
justification for the 100-fold greater rate chosen. Simpson felt s=0,001 may be too low, but 
0,01 could be taken as a “frequent value” (i.e., might occur now and then).[ ]31   Artificial 
laboratory settings or antibody resistance in hospital settings (with necessarily much larger 
population sizes to avoid killing the population off) are not representative of a natural setting 
relevant to an evolutionary scenario. 

A small and non-growing population of 64 members was chosen for the simulation. Fisher’s 
analysis showed that a selection coefficient even as great as S=0,1 would have only a 2% 
chance of fixing in a population of 10,000 or more.[ ]32  Lacking is the justification how the 
population would be limited to 64 members for at least 704 generations. I demonstrated above 
that instead of having 64 members with superfluous DNA to tinker with, long before 704 
generations we’d have none at all. Presumably these organisms are submitted to catastrophic 
environmental conditions to justify the maniac selectivity coefficient implied, but the 
simulation disallows the possibility of failure, that a generation might not pass on viable 
progeny( )7 . 

Objection #5:  Degeneracy of the genetic code, sexual dilution, and other factors are 
ignored.  The degeneracy of the genetic code has been neglected.  A protein is being 
represented by the weight matrix, and an approximation (Table 3) suggests that on average 
roughly 24% of all point mutations would generate the same polypeptide starting from a 
random DNA sequence (this assumes for estimation purposes that mutational transitions and 
transversions are all statistically the same). With about 1/4 mutations producing the same 
amino acid, the credibility of the scoring assumptions is further strained. 

Given the close correlation between number of synonym codons and proportion of 
corresponding amino acid present, the genetic code may have been designed partially to help 
retain protein functionality by protecting against point mutations( )9 . 



Recessive mutations and dilution of point mutations by sexual reproduction are not considered 
although it is claimed the rates in increase in Shannon information content can be 
quantitatively extrapolated to explain the origin of the human genome[ ]1 . 

Objection #6:  The final state is not stable. Having somehow achieved the miraculous, 
how long might these organisms manage to stay balanced on Mount Improbable?  ‘When 
selective pressure is removed, the observed pattern atrophies (not shown, but Fig. 1 shows the 
organism with the fewest mistakes at generation 2000, after atrophy) and the information 
content drops back to zero (Fig. 2b).  The information decays with a half-life of 61 
generations.’[ ]1

This confession closes the case decisively. Removal of what amounts to an intelligently 
driven selection allows the genomes to randomize rapidly. No naturally stable increase in 
Shannon information has been demonstrated. 

This outcome is to be expected due to the catastrophically rapid mutations assumed with the 
guarantee the population will not perish. The highly contrived mathematical characteristics 
describing this small population has no resemblance to the multiple survival challenges real 
organisms face in nature. 

The model does not simulate random evolutionary processes.

Objection #7:  Foreknowledge of the sequence length, L, is provided to the computer 
program.  Evolution somehow knows that one, and only one, binding site type only, of length 
exactly 6, is to be developed.  In Table 1 we summarize some examples of binding sites with L 
ranging between 4 to 51 bases.  Some recognizers, such as the H-NS protein, can interact with 
binding sites of various lengths, and is affected by the protein’s concentration. 

In addition, binding sites need not be contiguous, there may be spacers between conserved 
portions of the same binding site( )2 .  A legitimate simulation needs to consider competing 
sequences of at least L= 4 to ca. 51 concurrently with no foreknowledge as to an intended 
outcome:  survival and increased reproduction rate can have multiple causes and cannot be 
simply attributed to the change we wish to favor. If a randomizing process can go in every 
direction at once, so be it. 

Objection #8:  Foreknowledge of the required number of binding sites, , is assumed. 
Although the author claims chance can generate binding sites “from scratch", finding the 
necessary number of a new kind of site through biological trial and error, in the face of 
multiple survival challenges, has not been simulated:  this number was conveniently provided 
to the computer program( )3 . 

Current physiology implies something already functional, which can hardly be a random 
starting point.  A multitude of unrelated types of binding interactions exist to regulate genetic 
control elements and evolution cannot know in advance the necessary number of even one of 
them.  We read, 



‘The bacterium Escherichia coli has approximately 2600 genes, each of which starts with a 
ribosome binding site.  There have to be located from about 4.7 million bases of RNA which 
the cell can produce.  So the problem is to locate 2600 things from a set of 4.7X106

possibilities, and not make any mistakes.  How many choices must be made?  The solution to 
this question, log2(4.7 X 106/ 2600) bits, is “obvious” to those of us versed in information 
theory...’ [=Rfrequency = 10.8 bits][ ]27

Beginning with random base and recognizer sequences, the binding interaction is to be 
optimized and converge on the needed number of bits of Shannon information to uniquely 
identify, but not unduly overspecify, an ensemble of addresses or locations on the genome. 
However, at any point in time the computer program already “knows” what Rfrequency value is 
biologicaly needed and no attempt was made to simulate a trial and error process of finding 
this value over many generations.  Evolution has been provided with foreknowledge. 

Random sequences on DNA will not interact reliably with random polypeptides in any 
biologically sensible manner:  the selection being provided is strictly a mathematical artifact, 
nothing real is being simulated.  Random mutations cannot know in advance that an Rsequence of 
4 and not 2.8 or 20.3 bits needs to be converged on, to permit = 16 binding sites to be located 
reliably. 

Objection #9:  Binding sites must be correctly located with respect to the genetic 
element being regulated.  Real binding addresses must be judiciously placed at suitable 
locations on DNA to permit specific cellular processes to be regulated. This is very different 
than merely having the correct number, , of binding sites. The correct sequence at the wrong 
place can cause havoc, and the trial and error process to get these placed corrected was not 
simulated:  ‘Level 1 theory explains the amazingly precise actions taken by these molecules. 
For example, the restriction enzyme EcoRI scans across double helical DNA (the genetic 
material) and cuts almost exclusively at the pattern 5' GAATTC 3’, while avoiding the 46 - 1 = 
4095 other 6 base pair long sequences.  How EcoRI is able to do this has been somewhat of a 
mystery because conventional chemical explanations have failed.[ ]27

A trial and error process would have destroyed countless organisms and removed such 
destructive evolving machinery long before stumbling on a working scheme( )4 ,( )4b .  Obtaining a 
suitable number of recognizers to find a matching binding site is a necessary but insufficient 
cellular requirement.  We read, however,  

‘... as a parameter for this simulation we chose =16 and the program arbitrarily chose the site 
locations.’[ ]1

Even a perfectly functional binding site cannot simply be placed anywhere to regulate a 
specific gene!  (We’ll ignore the matter of where these genes being regulated came from in the 
first place, and whether they would function without the regulatory elements still to be 
evolved.)  However, the twos complement scoring scheme[ ]1 permits the computer program to 
pick binding locations arbitrarily, and calculates “points” based on how well the evolving 
sequences and regulating element match up.  It is simply assumed the non-binding portion of 



gene being regulated.  No trials and errors are simulated to get a proper binding sequence 
located at an acceptable distance. 

Objection #10:  Selection is intelligently driven.  Careful reading reveals not a simulation 
but a designed convergence algorithm. The two matrices of numbers, plus a tolerance score, 
define goals which can change slightly across generations. The immediate goals are instantly 
known and flawlessly acted upon by the computer program, with no consideration to 
survivability uncertainties.  By retaining half the highest of 64 scores every generation the 
process of being intelligently guided. The 2 matrixes converge far more quickly than random 
changes are allowed to separate them.  The rules established are: 

‘A section of the genome is set aside by the program to encode the gene for a sequence 
recognizing “protein”, represented by a weight matrix consisting of a two- dimensional array 
of 4 by L = 6 integers.  These integers are stored in the genome in twos complement notation, 
which allows for both negative and positive values... By encoding A = 00, C = 01, G = 10 and 
T = 11 in a space of 5 bases, integers from - 512 to +511 are stored in the genome... Each 
base of the sequence selects the corresponding weight from the matrix and these weights are 
summed.  If the sum is larger than a tolerance, also encoded in the genome, the sequence is 
“recognized” and this corresponds to a protein binding to DNA.’[ ]1

I worked out the scoring matrix according to the rules[ ]1  used by the simulation (Table 2). 
Should this not be correct I hope for clarification. A binding site of L=6 could score between 
6 X 512 and -6 X 511 “points”.  For =16 sites, the range for a genome falls between -49056 
and +49152.  The 32 high scorers always kill off exactly the 32 low scorers with enviable 
military precision and no collateral damage. A one point difference can flawlessly make the 
difference between life and death, no stochastic effects are allowed. Incredible as this level of 
selection appears to be, ‘To preserve diversity, no replacement takes place if they are equal.’[ ]1

Evolution has been granted skills beyond even Maxwell's Demon: a correct choice is made 
between entities which are quantitatively indistinguishable! The effects on the simulation of 
this innocent appearing decision has not been discussed[], but the Pascal source code found on 
the web site[ ]2  does shed some light:  ‘SPECIAL RULE: if the bugs have the same number of 
mistakes, reproduction (by replacement) does not take place. This ensures that the quicksort 
algorithm does not affect who takes over the population.  Without this, the population quickly 
is taken over and evolution is extremely slow!'[ ]2  [emphasis added]. 

Identifying the most suitable sequences to serve as binding sites is physiologically not so 
straightforward, and the biologically optimal binding sites are not always the strongest 
physically( )5 .  Indeed, nature presents us with many examples of biologically sensible solutions 
which are unexpected if derived under natural, unguided conditions. For example, Weindel 
has pointed out[ ]33  that under pressumed Ursuppe conditions (Formosa reaction) many sugars 
are generated whose nucleotides form stronger base-pairing (A::T; G:::C) than occurs with 
D(+)Ribose (as determined by melting point studies in his laboratory).   

 

 



Although thermodynamically preferred when compared to existing RNA-DNA and DNA-
DNA interactions, these chemical options are biologically unsuitable since the strands would 
not be separable as required by cells. Such observations cast severe doubt on the claim enough 
time and the right conditions suffice to explain the origin of life. An evolutionary process 
cannot plan for the future and choose to ignore known chemical kinetics and thermodynamics. 

Objection #11:  No provision is made for the proportionally greater destructive 
possibilities.  In an earlier paper we see how sensitive binding sites can actually be towards a 
single point mutation:  ‘For example, the E. coli genome should contain about 1000 EcoRI 
restriction enzymes sites (G-A-A-T-T-C), but that same genome should also contain about 
18,000 sequences one nucleotide removed from an EcoRI site. Site recognition by and action 
of EcoRI within E. Coli must include enough discrimination against the more abundant 
similar sites to avoid a fragmented genome.’[ ]16 Not only is the proportion of useful point 
mutations unrealistically modelled[ ]1 , but the proportion of almost correct (but deadly) to 
acceptable sequences is very large, and this has not been accounted for in any manner in the 
simulation. 

Other examples include the 6-base TATA box for which a single base mutation drastically 
damages transcription by RNA polymerase II[ ]34 . 

Objection #12:  The simulation assumes all organisms in that population face one and 
the same goal which is to be optimized.  ‘The organisms are subjected to rounds of selection 
and mutation.  First, the number of mistakes made by each organism in the population is 
determined.  Then the half of the population making the least mistakes is allowed to replicate 
by having their genomes replace (“kill”) the ones making more mistakes.’ 

The nature of this highly focused selection which could drive fine-tuning of a single kind of 
binding process was not discussed. There are many possible reasons for an organism to die 
without producing offspring given that each organism faces a variety of challenges. The 
effects of a mutational proportion of 1/256 bases in the genome could affect any of many cell 
processes in the real world and will hardly allow optimization for a single and the same goal 
every generation, driving fine-tuning of one kind of binding site, base-pair at a time. 

Should all evolutionary selection be focused on one goal, deleterious mutations elsewhere 
would not be eliminated.  The net effect would certainly not be an overall net decrease in gene 
sequence randomness. 

Furthermore, overlapping binding regions serving unrelated functions by different proteins 
could not be selectively identified and fine-tuned using this biologically over- simplified 
single-goal scenario( )6 .  A particular base mutation at one binding site may facilitate 
recognition by one recognizer, but be selected against since another one has become less 
effective. 

 

 



It has been suggested that the existence of higher sequence conservation than needed to locate 
the same binding type sites implies the existence of other recognizers interacting at those 
locations also.  An Intelligently Designed possibility could be entertained:  extra robustness 
had been built in and that randomization has not proceeded long enough to remove the excess 
Shannon-type information. 

Chauvin has pointed out[ ]35  that fly resistance to a single substance can be developed but cannot 
occur if the population faces 5 toxic products simultaneously.  He believes such claims of co-
evolution are merely laboratory artifacts. Whether countless random mutations could be 
guided by differential reproduction to produce structural novelty is highly improbable. Careful 
thought could begin with examples where no plausible selective advantage can be offered for 
either the intermediate steps not final result, such as the fact that some edible varieties of 
butterfly can mimic in appearance perfectly another species which is perfectly edible[ ]36 . 

Objection #13:  Binding sites generally require many novel biomolecules to function. In 
a recent article[ ]37  the atomic structure of the large ribosomal subunit of Haloarcula 
marismortui was reported.  3045 nucleotides plus 31 proteins are involved.  Ribosomes can be 
inactivated by cleaving of a single covalent bond in the SRL (sarcin-ricin loop) of the 23S 
rRNA component.  As the authors point out, ‘[The] ribosome assembly must be accompanied 
by a large loss of conformational entropy’ and ‘Of the 2923 nucleotides in 23S rRNA 1157 
make at least van der Waals contact with protein.... to immobilize the structures of these 
molecules.’ Only now can 3 recognizers, which participate directly in the protein synthesis, 
perform properly at the intended binding sites:  ‘Rather than being included in the ribosome to 
ensure that the RNA adopts the proper conformation, it seems more appropriate to view the 
RNA as being structured to ensure the correct placement of these proteins.’ Precisely as 
expected if Intelligently Designed. 

One cannot first create one protein then start developing the other components afterwards( )14

while hoping the first remains intact over time. As an example, UBF activates transcription by 
relieving repression caused by an inhibitory factor which competes for binding of TIF-IB to 
the rDNA promoter.  This is not left to chance, but UBF can be interfered with by pRb which 
seems to act as a signal which links the cell cycle with multiple components of the 
transcriptional machinery[ ]38 .  As a rule, several protein interact and these must be able to 
penetrate the nuclear membrane where gene expression can be regulated. 

The simulation makes no attempt to see whether chance could attain a minimum level of 
functionality to enhance viability and upon which selection could then begin to work. 

Objection #14:  Structural features of DNA may serve as relevant or incorrect binding 
sites.  Where the binding site is located is biologically critical, and there are various 
possibilities( )15 .  A legitimate simulation needs to mimic the trial and errors needed to identify a 
binding address and all the attempts to create a useful cellular outcome under the control of 
such binding interactions. 

 



The same or similar binding sequences on different portions of the genome can produce very 
different or even contradictory effects, no weight matrix exists a priori to guide evolution 
towards a parsimonious, multi-goal state. 

Objection #15:  The same binding location can be used by different proteins to regulate 
important processes.  How often one point mutation at a single binding site would really lead 
to a selective advantage when this affects the address multiple proteins use has not been 
simulated.  Sharing or competing at the same or overlapping sites is well known( )16 . 

Objection #16:  The same proteins can affect many unrelated genes concurrently. For 
example, mutations in E. coli hns alter the expression of many genes with unrelated 
functions[ ]( )39 17 .  The same binding protein can interact in different regulatory complexes at the 
same binding site:  mycN/max heterodimers probably activate and max/max homodimers 
repress transcription of, as yet, unidentified target genes upon binding to the DNA sequence 
CACGTG.[ ]40

Objection #17:  The same protein may contain multiple recognizer sites which can be 
used for unrelated binding purposes.  Should a protein already have been fine-tuned for a 
specific function, adding post facto another recognizer site without interfering with the 
geometry, folding order and so on of the previous function would require a multitude of 
random trials.  Alternatively, building multiple recognizer sites concurrently creates 
formidable constraints.  The existence of multiple sites is well-established, such as the A/B 
pocket and the C-terminal domain of pRb[ ]38 . 

Objection #18:  The same protein can be a transcriptional activator and repressor 
depending on the gene it acts on.  Examples abound of proteins accelerating transcription of 
one gene and slowing down that of another( )18 . Notice how the program trivializes such 
realities.  The reader is invited to give careful thought as to how many random attempts might 
be needed until chance mutations were to stumble, through only viable intermediate regulator 
protein structures, on solutions compatible with the contradictory cell requirements. 

Objection #19:  Regulatory proteins need to be transferred to the correct location in the 
cell.  Regulatory activities can occur in different organelles, and biochemical activities in 
various portions of a cell can determine whether a protein will penetrate the nucleus and then 
locate the intended binding site( )19 . How this requirement, which many binding sites must 
fulfill before they can function, could be developed by trial and error point mutations is 
missing in the simulation. 

Objection #20:  Regulation pathways by binding proteins can involve multiple proteins. 
Representative examples include:  Xvent-1 (a homeobox gene, and goosecoid interact in a 
cross-regulatory loop suppressing each other's expression)[41]; E1A proteins (transformation 
and transactivation are mediated through binding to pRb, p107 and p130, and the TATA box 
binding protein TBP[42]. 



Furthermore, regulatory proteins often 
form symmetric dimers (two identical 
proteins) or asymmetric ones[ ]18 , with each 
member binding to different regions on 
DNA (see Figure 1).  Notice that 
symmetric schemes now require duplicate 
sequences on DNA, both at the correct 
location, which would have to develop by 
random mutations while providing 
biological functionality during the whole 
process.  

 

Objection #21:  Regulation at binding sites may require fine-tuned interaction with 
other chemical processes.  One may consider SL1, which is inactivated by cdc2/cyclin B-
directed phosphorylation, and reactivated by dephosphorylation. This allows SL1 to work as a 
switch to prevent pre- initiation complex formation and to shut down rDNA transcription at 
mitosis[ ]43 .  Requirements such as these illustrate the large number of neglected trials needed 
before a binding interaction can fulfill a minimum functionality. 

Cations are also used as part of regulatory signals.  ‘The restriction enzyme EcoRI is a protein 
which cuts duplex DNA between G and A in the sequence 5' GAATTC 3'.  In the absence of 
magnesium, binding is still specific but cutting does not occur.’ (17) 

Since Dr. Schneider's simulation uses a binding length of L=6, we can consider a well-known 
process of this length which relies on selective methylation.  ‘In vivo cellular DNA is protected 
from EcoRI by the actions of another enzyme called the modification methylase.  This enzyme 
attaches a methyl group to the second A in the sequence GAATTC, so that EcoRI can no 
longer cut the sequence.  In contrast, invading foreign DNAs are liable to be destroyed 
because they are unmethylated.  The methylase is precise, attaching the methyl only to 
GAATTC and not to any of the sequences, such as CAATTC, that differ by only one base from 
GAATTC...  How a single molecule of EcoRI can achieve this extraordinary precision has not 
been understood.’[ ]17

'For example, if the restriction enzyme EcoRI did not reliably and repeatably recognize one 
pattern, GAATTC, the bacterium might die by the destruction of its own genetic material. 
Likewise, if a DNA polymerase did not reliably insert adenosine opposite every thymidine, 
many mutations would occur.’[ ]44

This scheme could only work after the modification methylase were already present and fine-
tuned to attach under the correct circumstances. EcoRI, a binding sequence, and additional 
components must all be in place within an acceptable tolerance before any kind of selective 
advantage would be measurable. 

 



Objection #22:  Regulation often needs to be achieved for a specific (or across different) 
cell type.  Consider as an example IL-4 (inappropriate multi-organ expression leads to 
autoimmune-type disease in mice)[ ]45   

In gene therapy the administered protein is a less than satisfactory substitute for a protein 
physiologically regulated by its origination in a specific tissue. That is why injected insulin 
cannot control blood glucose sufficiently well to prevent all diabetic crises, let alone the slow 
tissue damage and complications that lead to premature death.[ ]46   However, the simulation[ ]1

assumes chance only needs to generate two regulatory components: the binding site and part 
of a protein. 

Proportions of mRNA generated needs to be carefuly regulated, and can vary considerably 
according to specialized cell type.  For example, the alpha-fetoprotein gene in a mouse results 
in 200 times more mRNA in the yolk sac than the gut[ ]47 .  The regulation of expression is fine-
tuned according to cell type.  In addition, the pattern of expression of a specific gene can differ 
significantly depending on exactly where it is placed in a genome. 

Objection #23:  Regulation needs to be achieved according to stage in cell life. As an 
illustration, H-NS functions as a global inhibitor of gene expression during the cell's 
exponential phase of growth[ ]48   The trial and error attempts to be minimally functional has 
been neglected in the computer program. 

Objection #24:  Different promotors can act on the same gene producing isoforms. 
These can be tissue and cell dependent( )20 . The scenario of development by one random point 
mutation at a time leaves such observations unexplained. As an illustration, six hERalpha 
mRNA isoforms are produced from a single hERalpha gene by multiple promoter usage. All 
these transcripts encode a common protein but differ in their 5'-untranslated region as a 
consequence of alternative splicing. A differential pattern of expression of the hERalpha gene 
in human tissues and cell types was found.[ ]49

Objection #25:  An acceptable proportion of regulatory binding protein or complex 
must be generated and regulated as needed before natural selection can act. Vastly 
different levels of protein are found in cells and these change as needed( )21 .  Table 4 
demonstrates the wide distribution of mRNA molecules in a typical mammalian cell, which 
ranges from about 5 copies to over 12,000[ ]47 .  An overabundance would prevent fine-tunning 
of binding sites[ ]39  ( )21b , whereas too small an amount could preclude enough cellular value to be 
selectively identifiable( )22 .  Literature abounds demonstrating gene expression cannot be too 
low nor high( )23 . 

Objection #26:  Irreducible complexity, a fact of cellular processes, is glossed over. The 
simulation allegedly 'is representative of the situation in which a functional species can 
survive without a particular genetic control system but which would do better to gain control 
ab initio.  Indeed, any new function must have this property until the species comes to depend 
on it, at which point it can become essential if the earlier means of survival is lost by atrophy 
or no longer available.  



 I call such a situation a “Roman arch” because once such a structure has been constructed 
on top of scaffolding, the scaffold may be removed, and will disappear from biological systems 
when it is no longer needed.' 

Using lack of evidence as proof for an argument is rarely convincing (such as Punctuated 
Equilibrium being true due to the lack of transitional forms in the fossil record).  Before a 
particular polypeptide could be available for a new function, evolution is now required to have 
produced it plus additional components for a preceding use, also by chance mutations. Each 
individual precursor now also requires an ensemble for a yet earlier functioning complex. This 
argument requires at best a starting point and at worse merely increases the implausibility of 
obtaining each needed biochemical component. 

Objection #27:  Recognition of binding sites does not cover the miracles evolution is 
suppose to explain.  We read, 'Second, the probability of finding 16 sites averaging 4 bits 
each in random sequence is 2-4X16 5 X 10-20 yet the sites evolved from random sequences in 
only ~ 103 generations, at an average rate of ~ 1 bit per 11 generations.'  As pointed out, this 
was achieved by distorting cellular realities to the point of biological irrelevance.  But now an 
extrapolation is made from what is a relatively trivial fine tuning challenge for evolution to a 
grandiose claim: 

'Likewise, at this rate, roughly an entire human genome of ~4 X 109 bits (assuming an average 
of 1 bit/base, which is clearly an over-estimate) could evolve in a billion years...' 

This is indeed a remarkable extrapolation! A mutational rate of 1/256 bases on average 
throughout the whole genome would have to apply to multi-cellular organisms also.  Visualize 
what your child would look like after cell fertilization and the following 50 or so cellular 
duplications.  Almost 0.5% of the bases get scrambled 50 times in a row (recall that a perfectly 
random distribution of bases on DNA implies a 1/4 chance any base will show up at each 
position).  Should even one gene in a somatic cell remain functional, subsequent cell 
replacement during the lifetime is sure to wipe it out also. This process is then to be repeated 
to produce lovely, bouncing grandchildren.  A free-living organism would not last very long 
with such flawed DNA duplication and error correction mechanisms. 

Major issues for which no plausible solutions by chance mutations have been offered to date 
have not even been addressed.  Examples include: how sexual reproduction could have arisen; 
the existence of multi-cellular organisms( )30 with specialized cells and integrated functionality; 
and biological novelty demanding the interaction of large numbers of genes, such as in sonar 
and sight.  Even had a plausible simulation been offered which demonstrated that one type of 
binding site could be generated ab initio via random mutations, an extrapolation to 
evolutionarily unexplained and unrelated problems is unwarranted. 

 

 



DISCUSSION 

Evolutionary theories need to account for the creation of novel biological functionality, which 
includes explaining how new genes might arise. Consulting the Munich Information Center 
for Protein Sequences, we determine that yeast, the simplest eukaryote cell known, has a 
sequenced length of 13.5 megabase[ ]12  coding for about 5929 different kinds of proteins, about 
30% with no known homologues[ ]50 . The worm Caenorhabditis elegans is the simplest 
multicellular animal showing complex development and a differentiated nervous system[ ]51 and 
has 959 cells.  Its 97 megabase genome[ ]52  codes for about 19,099 proteins[ ]51  (three times more 
than yeast).  Chervitz et al.[ ]13  compared the sequences of yeast and the worm.  Around 40% of 
yeast ORFs (Open Reading Frames) appear to have counterparts in the worm, and 20% of 
worm ORFs were found in yeast and seem to be indispensible. Most significant is that 34% of 
the predicted proteins are found only in other nematodes[ ]51 . Conversely, many important 
proteins in yeast are not found in the worm[ ]13 . In fact, a large number of domain structures are 
not shared at all (Table 5). 

Somehow a vast number of correct base pair sequences need to be incorporated into genomes 
without producing chaos.  For ‘information’ as used here[ ]1 , an increase in genome size and 
restriction of genes to subsets of allowable sequences represent increases in information 
content as defined by Shannon.  Fine tuning of one kind of binding site is admitedly a very 
modest part of what needs to be explained. 

One cannot brush off the objections introduced above by reasoning that “the principle is what 
matters”, and the alleged convergence merely requires a much greater number of generations if 
modelled more accurately.  Mutations by nature randomize those acceptable DNA sequences 
responsible for biologically useful functions.  Increase in information content, as defined, to 
optimize or create new function requires this trend to be reversed. Any claim that random 
mutations plus selective reproduction would work must be realistically and quantitatively 
modelled to justify the claims the statistically unexpected trend could actually have occurred. 

The problem can be broken down into two components. (a) Random trials would be simulated 
until all constraints outlined above are satisfied unto the minimum point where reproductive 
selection could be sensed in a Darwinian sense; (b) thereafter, additional trials would be 
simulated where selection, unguided by a long-term goal, would increase favorable mutations 
throughout a population.  The simulation neglects aspect (a) entirely, by assuming 
extraordinarily fast mutations rates and proportions of useful point mutations available to 
random sequences, which would instantly be selectively acted upon with no possibility of 
extinction.  Let us identify some of the minimal constraints binding sites must satisfy before 
any kind of selection were to be possible. 

Since one or more proteins will be involved in binding to a portion of nucleic acid polymer 
strand we need a realistic probability of getting a protein with minimal functionality. We 
begin with random amino acid sequences, since evolution eventually starts with a biologically 
non-functional state.  Yockey has done extensive calculations using Shannon's information 
theory on the cytochrome c family: 



'Cytochrome c is the best candidate for the first application for a number of reasons. The list 
of sequences reported in the literature includes the largest number of species for any protein 
and also covers a wide range in the taxonomic scale.'[ ]53  ( )24 It is possible additional synonyms 
could be tolerated, resulting in lower Shannon information. 

Cytochrome c seems reasonably representative of presumably very ancient genes 'We find in 
Dayhoff’s list (1978) that proteins which are regarded as ancient or even precellular such as 
certain domains and structure of glyceraldehyde 3-PO4 dehydrogenase, lactate 
dehydrogenase, glutamate dehydrogenase ferredoxin and the histones have a mutation rate 
which is nearly the same or smaller than that of cytochrome c. It is therefore reasonable to 
believe that they have the same or larger information content.’[ ]53

Other studies confirm the intersymbol independence of protein residues and restricted number 
of functional members within a protein family[ ]54 . 

To ensure we are not being too demanding, let us assume that all the possible varieties of 
cytochrome c would have been usable by the first organism in which it supposedly first 
evolved.  This is unlikely to be true.  Yockey has pointed out that ‘Fitch & Markowitz (1970) 
have shown that as the taxonomic group is restricted the number of invariant position 
increases.’[ ]53

To the list of all currently available sequence data, Yockey generously added all amino acids 
which might be tolerated by cytochrome c at each position.  This allowed him to calculated[ ]147

via Shannon’s information theory the number of minimally functional cytochrome c members. 
He also calculated the total number of polypeptides sequences 110 residues long (excluding 
sequences very unlikely to be generated, having many residues rarely used in nature). 

His work shows that for every functional member, random mutations would have to generate 
and test 

5 X 1043                                                                                                         (2) 

non-functional variants. 

We can now evaluate objectively the claim[ ]1  that 64 random genomes could produce a novel 
binding site, with regulator protein, in 704 generations by random point mutations, starting 
from total random sequences.  Furthermore, I have already pointed out that within just a few 
generation we would no longer have all 64 members with necessary but presently superfluous 
DNA material to develop the new binding site. 

This is the estimated proportion of minimally functional to worthless residue sequences for the 
best studied protein to date.  Is this proportion unduly small for genes overall?  For histone H4, 
alcohol dehydrogenase or glyceraldehyde-3-phosphate dehydrogenase it is orders of 
magnitude too generous[ ] [ ]57 58  and other considerations suggest comparably infinitesimal 
proportions must be overcome on average to produce new proteins before selection could 
begin to fine-tune( )25 . 



It is noteworthy that some domains, which are highly invariant but key portions of proteins 
which interact with specific DNA sequences, although only part of the protein are alone larger 
than cytochrome c[ ]59 :  POU (~160 amino acids), CTF DNA binding domain (132 acids) and 
CFT proline-rich domain (143 amino acids). Proteins containing such domains must not only 
be properly folded but possess additional functioning domains to be of any biological use. 

Vague references to co-evolution using existing parts for new purposes merely shifts the 
problem elsewhere.  If the odds of obtaining that protein, but for a different ancestral purpose, 
is similar then nothing has been solved.  One merely introduces additional difficulties, such as 
the need to explain how that protein and the members of the earlier function arose.  Should n = 
5 structurally unrelated genes be involved in the preceding function, then the odds of obtaining 
a functional ensemble becomes a number such as[ ]2  raised to the 5th power.  Thereafter one 
needs to demonstrate there is a viable path accessible by random mutations which can connect 
the preceding ensemble of components with that protein’s new use, and that all evidence for 
the ancestral complex was then conveniently eliminated. 

Experimental studies on acceptable sequences based on protein folding by Sauer using arc 
repressor[ ]19  and lambda repressor[ ]21  suggest Yockey’s estimate[ ]2 is far too generous, at least 
for average-size proteins.  Sauer estimated that about one out of 1065 of polypeptides he studied 
are able to fold properly (one of many requirements for useful proteins), a number Behe[ ]22 has 
compared to successfully guessing a grain of sand in the Sahara desert three times in a row. 
Let us accept all known evidence and accept that a very small proportion of polypeptides 
would be biologically useful.  Let us tentatively accept 5 X 1043 as representative also for DNA 
base sequences.  The simulation[ ]1  needs to account for the generations needed to produce the 
first minimally functional protein from a random sequence. 

Assuming a generation time of only 10 minutes for a billion years would provide 109 X 365,25 
X 24 X 6 = 5.3 X 1013 generations. A population 64 members on average would have a chance 
on the order of 

6.8X10-29                                                                                                         (3) 

of stumbling on one minimally acceptable gene sequence before selection could start
optimizing a binding interaction (the need for it to also have binding sites and be minimally 
regulated has been neglected).  This assumes all point mutations could occur and do not 
concentrate on a limited number of hot spots[ ]60 . 

It is apparent that 704 generations in total could not possibly suffice for 64 descendants of 64 
random genomes to produce a novel binding site optimally at 16 locations as claimed[ ]1 . This 
illustrates the fact that the simulation[ ]1  is not dealing with anything biologically relevant. The 
process has essentially zero probability of even getting started. 

Having one minimally functional gene, a realistic computer model would next simulate 
competition between degradation of this sequence and developing a novel binding site.   

 



Since evolution cannot look ahead, multiple sites of varying lengths L, generated by random 
point mutations, must be tested by trial and error concurrently, each with a full complement of 
regulatory elements.  Suitable point mutation selectivities and population genetics assumptions 
need to be identified. 

What kinds of odds are faced in developing just one of the hundreds of already identified DNA 
recognition sites[ ]3 , each used by a different specific gene regulatory protein (or set of 
regulatory proteins), starting from scratch using random point mutations?  In total an 
eucaryotic cell has thousands of different gene regulatory proteins. A realistic simulation must 
mimic the process of satisfying multiple requirements by the recognizer protein and 
DNA/RNA binding site at a minimum level of functionality before any kind of Darwinian 
selection could be assumed.  Some of the factors neglected by the simulation under 
consideration have been identified. 

In Stage 1, a true simulation would run through random trial and errors attempting to satisfy 
several constraints before selection could be invoked.  Any and all forms of selection for any
biological purpose which would increase the proportion in a population is meant here, not only 
with respect to a specific future binding interaction.  Once all constraints are met, the second 
stage, with selective advantages, would be simulated. 

Proportion of recognizers before selection  
of any kind would be measurable 

P1 With an acceptable stable tertiary structure 
P2 With an acceptable recognizer site 
P3 Generated reliably within an acceptable concentration range 
P4 Not interfering with other genetic processes (repressor vs. activator) 
P5 Transferred to the correct cellular compartment 
P6 Located in the correct cell type of multicellular organisms 
P7 Acting during an appropriate portion of the cell life 
P8 With at least one additional functioning domain besides for the binding site 
P9 With minimal operational regulation such as by phosphorylation, cations, 

methylation, etc. 
   

Proportion of binding sites before selection  
of any kind would be measurable 

P10 With acceptable binding length, vs. L=4 to ca. 51 unaccepable alternatives 
P11 With suitable base sequences for each particular length, L 
P12 In an acceptable location with respect to genetic elements to be regulated 
P13 In an acceptable concentration range in the genome 
P14 Biologically compatible with already existing recognizers. 

Only now does selection become relevant for any organisms meeting all constraints. 



In Stage 2 the same considerations apply but the proportion of better to lesser tuned 
possibilities decreases steadily.  The possibility of overall loss of Shannon information content 
in the genome by decrease in gene specificity via random mutations must be permitted in such 
a simulation.  Thus, if a very high mutation rate is permitted, it must be treated as truly random 
across all genes. 

In particular, realistic 
selection coefficients need 
to be used especially if one 
is dealing with point 
mutations.  At the 
borderline level for 
selection to be measurable 
they would be essentially 
zero.  Ironically, the 
incremental improvement 
will decrease once 
acceptable functionality 
has been attain- ed, even as 
the proportion of improved 
configurations a- vailable 
become vanishingly small 
(Figure 2). 

 

It was a special creationist, Edward Blyth[ ]61 who introduced in 1835, long before Darwin, the 
notion of natural selection, as a way of preventing major errors from being passed on to 
offspring.  The selectivity coefficient, s, would be large when comparing a viable state to a 
major genetic disaster, but s for a base pair change would be near zero when attempting to 
distinguish between ‘working quite well’ and ‘slightly better’. Eventually this resembles 
placing a ball on an almost vertical slope and hoping enough earthquakes would roll it up 
further uphill.  The implausibility is strictly a statistical matter. 

Realistic population genetics would need to be included in the post-selection simulation stage 
since even the rare good mutation has only a very small probability of being fixed in the 
population. 

Admitedly even this proposed simulation would not model the generation of multi- gene, 
novel biological functions, via random mutations.  Over-simplified models, such as Dawkins’ 
example of mutating English letters, based on selfish gene notions, have no biological 
relevance( )26  and the logical and mathematical flaws have been pointed out[ ] [ ]62 63 . 

Conceptually, Dawkin’s example resembles fixing a magnet and allowing it to relentlessly 
attract a metal object, although very fast at first and slower towards the end.  The distance can 
never increase between “generations".   

 



Schneider’s refinement allows the metal piece or magnet to move a very small distance 
sideways between generations, bringing the two relentlessly together.  Progress at the 
beginning is also very rapid.   

On average each generation must increase its Shannon information content, due to the way the 
algorithm was programmed, until reaching the intended plateau. Occasionally a given 
generation may be farther from the goal than the preceeding but the unrealistic parameter 
settings used guarantee success.  Both programs have been intelligently designed to disallow 
failure to converge to the intended result given enough iterations. 

We recognize repeatedly two remarkable assumption hidden in such simulations: chance 
mutations have a huge proportion of useful options at every step linking initially random base 
pair sequences and currenty observed genetic sequences; and these intermediate steps are 
selectively recognized with uncanny skill. This is quantitatively not consistent with what we 
know about mutations.  ReMine[ ]64  has criticized such unrealistic evolutionary assumptions in 
considerable detail( )27 . 

Spetner has also questioned how many single nucleotide changes may actually be available 
with a measurable selective value[ ]65 (recall that about 24% of these would code for the same 
amino if mutated randomly[ ]1 ).  He points out[ ]66  the dilemma this assumption causes: if faced 
with such a rich variety of useful mutations at all times, each heading off in different 
evolutionary directions, then long-term convergence to similar functional structures won’t 
occur, contra what evolutionists claim. If each reasonably sized genome had a million 
felicitious mutations available then stumbling on similar organs (as observed for unrelated 
mammals and marsupials) via a multitude of random mutations is statistically absurd.( )28 ,( )28b

Whereas step-wise development of binding sites by random mutations is not reasonable, one 
could entertain the notion that initially over-engineered binding sites had been Designed to 
provide robustness against random mutations. Point mutations could squeeze out excess 
Shannon information until the limit is reached where the locations can be unambiguously 
identified.  Further destructive mutations would render the organisms non-viable and be 
selected against.  Such a proposal would be inconsistent with an evolutionary viewpoint but 
consistent with Special Creation or Intelligent Design. 

Suitability of Shannon’s Definition of Information in Biology. 

Few creationists or members of the Intelligent Design community view Shannon’s work in 
telecommunications as an adequately comprehensive theory of information in biology, in spite 
of its mathematical virtues.  It is certaily true that of all amino acid sequences which can occur, 
only a small subset fulfill a useful biological function, and the mathematics developed by 
Shannon, Tribus, Brillouin and others help with various probabilistic calculations.  The word 
‘information’ carries powerful and often inconsistent associations and I hope to provide a more 
useful and comprehensive theory of biological information later( )29 . Repetitive and reliable 
guidance of complex processes necessary for organisms to survive has no parallel in the non-
living chemical world.   



Examples include the production of highly specified proteins via the genetic code; 
coordination of multi-cellular processes (heat regulation, signal transmission, etc.); cell 
duplication; animal instincts; guidance of biochemicals to specific organelles across various 
membranes; production and delivery of energy packets (ATP). We have concentrated here on 
what may be the first attempt by evolutionists to model with a computer program the creation 
of a specific, new biological function: a novel binding site, by random point mutations and 
Darwinian selection. 

There is currently intense discussion as to how ‘information’ should be defined and its 
properties[ ] [ ] [ ]67 68 69 .  Gitt[ ]68  has examine many aspects of coded information, and concluded that 
information obeys many laws, one of which is that a coded information system can only arise 
by intelligent agency. 

Conclusions 

Dr. Schneider has identified a phenomenon which certainly needs explaining.  After aligning 
149 E.coli ribosome binding sites, ‘We get:  Rsequence = 11.0 ± 0.4 bits per site, which is almost 
identical to the value of Rfrequency, 10.8, we found earlier!  There is just enough pattern at 
ribosome binding sites (Rfrequency) for them to be found in the genetic material of the cell
(Rsequence).  These data imply that there is no excess pattern, and no shortage of pattern.’ (27) 

The existence of patterns of minimal and highly conserved size, for which a protein has been 
precisely tailored, often aided by additional enzymes, displays a remarkable level of fine-
tuning, and raises the issue who or what produced such a feat. Reliable identification of short 
patterns is only possible by precise 3-dimensional Übereinstimmung between recognizer and 
DNA site. 

The simulation described was rigged to converge by using a large number of assumptions 
which are biologically unrealistic. Many cellular constraints were not included in the 
simulation, such as:  the need for binding sites to be placed correctly with respect to pre-
existing genetic elements which are to be regulated; the need for multiple new enzymes for 
recognizers to be able to work; the need to provide recognizers within an acceptable 
concentration range.  Unrealistic parameter settings were used, including:  the rate of mutation; 
the proportion of available useful mutations; the flawless effectiveness of natural selection. 

Finally, the model is biologically fatally flawed in many ways:  organisms with very small 
genomes which inherit superfluous DNA would be rapidly out-populated by those without it; 
the organisms are assumed to face only one survival goal; multiple and often inconsistent use 
of binding locations and recognizers was overlooked; recognizers are assumed to 
automatically be in the correct cellular compartment (organelle); and all details which could 
allow the simulation to fail, such as including randomizing mutations elsewhere in the 
genome, or error catastrophe, were excluded. 

The limited goal of producing novel binding sites from scratch by random point mutations has 
not been demonstrated by this paper[1]. This can be easily demonstrated by sensitivity analysis 
(i.e., by testing various parameter settings) even using this flawed model as a starting point. 



The reader is invited to test or consider the effects on generations needed by increasingly 
merely 3 parameter values, still far below what is biologically relevant: 

Parameter Value Used in 
Simulation 

Realistic 
Value 

For Sensitivity 
analysis 

Selectivity coefficient(a) ca. 1 0.001 to 0.01 ca. 0.05 

Mutation(b) rate/ nucleotide 
/ generation 1 / 256 < 1 / 108 ca. 1 / 105

Proportion useful 
polypeptides(c), (147) ca. 5X10-1 10-44 ca. 10-15

a. To avoid reprogramming, one could "kill" 1 or 2 low scorers instead of 50% every generation, and 
replace equal scorers by the descendant mutant. Since relative improvement becomes less noticeable as 
the binding interaction is optimized, and genetic drift is neglected, this value for validation purposes is 
obviously absurdly generous once the process begins.  

b. HIV-1, with 1010 virions generated per day, was determined to be at the upper limit of possible mutation 
rate, with one error every 2000-5000 bases.  64 free living genomes could never tolerate this rate. For 
bacteria 1/10E8 to 1/10E10 is estimated( )8 .  So my proposed value is generous.  

c. A proportion of 10-15 random polypeptide sequences with s=0.1 is absurdly generous, and if true would 
be verifiable empirically.  The proportion of functional cytochrome c proteins (which are about 1/3 the 
size of average proteins) to all polypeptides of comparable length was calculated by Yockey to be on the 
order of 10E-44.  

Such changes clarify how dramatically great the number of generations would become should 
realistic parameter settings be tested.  During these single goal iterations, function-
destroying mutations would accumulate in other portions of the genome since the 
population is not allowed to perish. With a population of only 64 members natural 
selection cannot weed all flaws accumulating througout the genomes.  I predict the net 
effect, if simulated realistically, will show a net destruction of functional specificity, 
meaning a net decrease of information as defined>[ ]1  over all genes as time increases. 

It is apparent that the extrapolation to claim a billion years is sufficient to produce human 
beings by chance, starting from a random DNA sequence, given than even one novel binding 
site could not possibly be generated as proposed, is not justified. 
  

Footnotes 

(1) For example, gene duplication has been identified with: disorders of the PNS associated 
with duplication of the peripheral myelin protein-22 (PMP22) gene locus[ ]70 ; Charcot-Marie-
Tooth disease (CMT), associated with a partial duplication of chromosome 17[ ]71 ; amplification 
of the MYCN gene is frequently observed in human neuroblastomas[ ]40 ; consider also the 
frequenin gene of Drosophila[ ]72 .  [RETURN TO TEXT]

 



(2) Such as the bacterial mRNA AUG initiation codon which is separated from the six 
nucleotide Shine- Dalgarno sequence: ‘the procaryotic initiation codon, which is 
predominantly AUG, also has GUG and UUG on occasion.’[ ]73  There may be ‘spacing between 
parts of a binding site, as with ribosome binding sites (Shine and Dalgarno to initiation codon) 
or procaryotic promoters (-35 to -10).’[ ]73   [RETURN TO TEXT]

(3) Dr. Scheider has alluded to such effects in an earlier paper: ‘Secondly, the information 
patterns are different for the various repressors. LexA and TrpR have high peaks three bases 
wide, while ArgR has double spikes and cI/Cro have single spikes.  These distinctive 
morphological differences probably reflect the location and strength of structural contacts 
between the different repressors and their cognate sites.’[ ]25   [RETURN TO TEXT]

(4) ‘Likewise, the number of sites is approximately fixed by the physiological functions that 
have to be controlled by the recognizer.  So Rfrequency is essentially fixed during long perids 
of evolution.  On the other hand, Rsequence can change rapidly and could have any value, as it 
depends on the details of how the recognizer contacts the nucleic acid binding sites and these 
numerous small contacts can mutate quickly. So how does Rsequence come to equal 
Rfrequency?  It must be that Rsequence can start from zero and evolve up to Rfrequency. That 
is, the necessary information should be able to evolve from scratch’.[ ]1   [RETURN TO TEXT]

(4b) For the C. elegans genome an average of 5 introns has been estimated for the 
approximately 19099 genes.  Unregulated joining of the resultig exons provide a vast potential 
to generate worthless and interfering polypeptides.[ ]51  p. 54.  [RETURN TO TEXT]

(5) ‘At any particular time in the history of a natural population, the size of a genome, G, and 
the number of required genetic control element binding sites, , are determined by previous 
history and current physiology, respectively, so as a parameter for this simulation we chose 
=16 and the program arbitrarily chose the site locations, which are fixed for the duration of the 
run.’[ ]1

‘Probabilities computed from the individual information distributions are curious because 
sequences with evaluations significantly higher than the mean have low probabilities of being 
real sites, as can be seen in the distributions. Strong sites are less likely to appear in the set of 
natural sites.  Evidently the sites evolve to what is required for their function rather than to 
become the strongest binder.’[ ]74

  [RETURN TO TEXT]  

(6) Dr. Schneider is aware that only the immediately functional will be tolerated:  ‘If a protein 
were unnecessary, mutations in its gene would eventually destroy it, and the ribosome binding 
site at the start of the gene would atrophy. Likewise, if the ribosome were to start translation 
in places that it shouldn’t, the cell would waste energy making useless proteins.  Thus it would 
make biological sense if the only places ribosome binding sites exist is in front of functional 
genes.’[ ]27   [RETURN TO TEXT]

 



(7) From statements in ealier papers it is clear Dr. Schneider should have taken this into 
account.  ‘First, when two or more recognizers have binding sites that are always in the same 
register with respect to each other, the sequence conservation is higher than expected from the 
size of the genome and the number of binding sites. If a thorough information analysis has 
been done, the situation is easy to detect and in such cases it is unwise to use the individual 
information matrix because it does not represent a single entity. Second, when nearby sites are 
not in the same register, the sequence conservation of one site is blurred out in the alignment of 
the other site.’[ ]74

And elsewhere he writes, ‘In comparison to the other binding sites, the pattern at T7 promoters 
in the phage genome is dense and contains more information than one would expect. 
However, when an experiment is performed to determine what components are important to 
the RNA polymerase, only half of the pattern remains. The excess pattern is thought to 
represent the binding of another DNA binding protein.’ [ ]73   [RETURN TO TEXT]

(8) The population is not allowed to go extinct to guarantee the intention of the compute 
program is met.  We read, ‘The fact that the population cannot become extinct could be 
dispensed with, for example by assigning a probability of death, but it would be inconvenient 
to lose an entire population after many generations.’ Model accuracy to reflect the true state of 
affairs should be the correct criteria.  [RETURN TO TEXT]

(9) Kimura[ ]75  estimates for mammals with about 50 cell divisions along the germ line from the 
fertilized egg to a gamete between 50X10-8 to 50X10-9 per nucleotide pair per generation. 
Kondrashov[ ]76  estimates for humans a higher value, between 2X10-8 and 1X10-7. 

In bacteria the mutation rate per nucleotide has been estimated to be between 0.1 and 10 per 
billion transcriptions.[ ] [ ]77 78  ‘For organisms other than bacteria, the mutation rate is between 
0.01 and 1 per billion.’[ ] [ ]79 80   [RETURN TO TEXT]

(10) Sonneborn (1965) suggested[ ]56 that the degeneracy redundance helped protect against 
protein error.  This effect is very weak compared to other error correction mechanism available 
in the modern organisms.  [RETURN TO TEXT]

(11) ‘First, a matrix is created from the frequency f(b,l) of each base b at position l in the 
aligned sequences, according to Riw(b,l) = 2 + log2f(b,l) - e[n(l)], where e[n(l)] is a small 
sample correction.  Second, this matrix is used to evaluate the individual information content 
of each site.  That is, after aligning the matrix with a sequence, each base in the sequence 
selects one of the four weights in Riw(b,l), and all weights for the site are summed for all 
positions l to produce the “individual information", Ri. Third, if the individual information 
values of all the aligned sequences are averaged the result is Rsequence.’[ ]81

‘Only functional sites are needed to create an individual information matrix...A set of 20 or 
more examples generally gives a reasonable sequence logo and weight matrix.’[ ]81   
[RETURN TO TEXT]

(12) Consider an illustrative example, such as the binding of transcription factor UBF to an 



rDNA promoter[ ]82 .  This relieves repression by an inhibitory factor which competes for 
binding of TIF-IB to the rDNA promoter. To prevent runaway transcription and cell 
proliferation, the product of the retinoblastoma gene, pRb, can bind to UBF interfering with 
UBF’s binding to DNA.  pRb seems to act as a signal transducer connected to the cell cycle 
clock via its phosphorylation state. ‘All three classes of cellular RNA polymerases are targets 
of pRb-mediated transcriptional repression.’[ ]38 Defective RB genes can result in cancer in the 
retina or pancreas.  Simulating the origin of the UBF factor or its binding site one random 
point mutation at a time, neglecting the regulatory environment, misses the essence of what is 
supposed to be modelled.  [RETURN TO TEXT]

(13) Dr. Schneider is aware that binding sites depend on providing suitable geometric shapes: 
‘The messenger RNA which the ribosome is searching is shown as a string of a’s, c’s, g’s and 
u’s...  The ribosome is depicted as an ellipse with two hook-like pieces.  The left one 
represents the 3' end of the 16s rRNA, which is the part of the ribosome which recognizes the 
Shine and Dalgarno sequence [“ggag”], and the right one represents the first transfer RNA to 
which is attached a formylmethionine (fMet), the first amino acid of the new protein... the 
initiation codon [is] “aug”.’[ ]27   [RETURN TO TEXT]

(14) ‘A “randomization” experiment was performed in which OxyR protein was used to gel 
shift 30 base pair equi-probable random sequences. Unfortunately this gave a dismal logo, 
possibly because the protein was prevented from binding properly by the flanking constant 
sequence of the vector.’[ ]83  [i.e., rest of the protein is also relevant!]. 

‘To clarify this situation, the randomization experiment was repeated with 45 base pair equi-
probable random sequences which were then aligned by an information theory technique using 
the malign.p program.  Only some of the patterns evident in Fig. 2a [based on biological OxyR 
binding sequences] were confirmed by this experiment, whereas others became more 
predominant.’[ ]83  ‘The almost insignificant weak preferences for A at ±6, T at ±9, and T at ±18 
of wild-type appear amplified.  Additional conservation not seen previously appeared at ±8 (?), 
±12, ±16, ±19 and ±22.  The reason for these quantitative discrepancies between the wild-type 
sequence logo and the logo from experimentally selected sites is unknown, but might be 
accounted for by the small sample sizes.’[ ]83   [RETURN TO TEXT]

(15) ‘Genetic control systems often work by one molecule binding to a spot to prevent another 
molecule from binding there.’[ ]27

Other examples have also been offered: ‘The lac repressor protein will bind the operator only 
if it is not also binding an inducer.’[ ]44

In vitro experiments may fail to mimic in vivo observations if not all binding members are 
provided.  ‘For example, no spermidine was used in the gel shift experiment, yet it is well 
known that spermidine is important for precise recognition by other DNA binding proteins.’[ ]83

‘Cui et al. investigated Lrp by using the SELEX (systematic evolution of ligands by 
exponential enrichment) procedure, an in vitro method that is used to identify binding motifs. 
In the SELEX procedure, a specific protein is used to select binding sequences from random 



synthetic sequences.’[ ]84  ‘Surprisingly, the sequence logos for natural Lrp binding sites 
determined by footprints or mutations do not closely resemble the sequence logos obtained by 
SELEX.’[ ]84  ‘To explain these major discrepancies between the natural and the SELEX sites, 
we suggest that three proteins are binding in the SELEX experiment...Two of these are the 
complementary regions separated by 10 bp at -7 to -5 and +5 to +7...’[ ]84  ‘The strongest sites, 
such as those found by SELEX, are not “optimal” when viewed on an information theory 
scale.’[ ]84   [RETURN TO TEXT]

(16) ‘OxyR is a tetrameric protein that binds to the DNA of several promoters in Escherichia 
coli and activates transcription of genes encoding antioxidant enzymes.’[ ]83  Furthermore, 
‘When a protein is in contact with a major groove, the two base pairs and their two orientations 
can be distinguished, as recognized by Seeman et all, so the protein is capable of “choosing" 
one of the four possibilities:  A=T, T=A, C G, or G C.’[ ]83   ‘This choice of 1 possibility in 4 
can be made with 2 bits of information.  (This is calculated as log2 4/1 = 2)’.[ ]83  ‘In contrast to 
the major groove, contacts in the minor groove of B-form DNA allow both orientations of each 
kind of base pair so that rotations about the dyad axis cannot easily be distinguished.’[ ]83

‘Because only 2 of the 4 possibilities can be distinguished, when a B-form minor groove is 
probed by a protein no more than 1 bit of information (log2 4/2 = 1 bit) can be obtained.’[ ]83   
[RETURN TO TEXT]

(17) Ultrabithorax and even-skipped homeo domain proteins (UBX and EVE) of Drosophila 
melanogaster exert active and opposite effects when bound to a common site upstream of a 
core promoter[ ]85 ; factors capable of binding to Sp1-binding sites including Sp3, Sp4, BTEB 
and BTEB2[ ]24  (of a number of putative Sp1 target genes tested,  

 

only two showed decreased expression in the absence of Sp1 which indicates other 
components are needed to regulate only the intended sites); occupancy of a operator by the 
tryptophan repressor blocks access to the promoter by RNA polymerase[ ]86 . 

Dr. Schneider has alluded to this fact in earlier papers: ‘It is possible for two such recognizers 
to have the same base preferences. Since we use sequences to estimate the probabilities of 
bases at each position, the analysis will give the same information content for two entirely 
distinct mechanisms.’[ ]25  And, ‘Most single-base changes in promoters and ribosome binding 
sites decrease synthesis by 2- to 20-fold (Mulligan et al., 1984; Stormo, 1986).  Binding to 
similar sites would degrade the function of the entire system. For repressors, binding to 
pseudo-operators would increase the chances of gratuituosly inhibiting transcription and may 
also serve as a sink for the recognizer.’[ ]16   [RETURN TO TEXT]

(18) Consider also Sp1 promoter selectivity (chromatin, TAFs, and CBP are required for 
synergistic activation by Sp1 and SREBP-1a.)[ ]87 . 

As another example, ‘Fis [Factor for Inversion Stimulation] is a pleitropic DNA-bending 
protein that enhances site-specific recombination, controls DNA replication, and regulates 
transcription of a number of genes in Escherichia coli and Salmonella typhimurium.’[ ]88   
[RETURN TO TEXT]



(19) SAL[ ]89  (development of the fly’s gut); Dorsal[ ]90 ; Cubitus interruptus (Ci) (drosophila limb 
development by regulating different sets of Hh target genes)[ ] [ ]91 92 ; RelB (acts like a 
transactivator with p50, whereas RelA-mediated transactivation is reduced by RelB)[ ]93 ; GLI3 
(Mutations are known to alter the balance between its activator and repressor function)[ ]94 ; 
VDR (novel coactivator complex of VDR called DRIP was reported, which seems to confer 
cell-type specific effects)[ ]95 ; Cro and cI (are DNA-sequence specific activators and 
repressors)[ ] [ ]96 97 ; Sp3 and BTEB (24); GA (both an activator and repressor of ribosomal protein 
gene transcription)[ ]98 ; Sim[ ]99 ; Krüppel (activates transcription as a monomer through an 
interaction with TFIIB, represses by interacting with TFIIE)[ ] [ ] [ ] [ ] [ ]100 101 102 103 104 ; SpoIIID 
(sporulation in B. subtilis)[ ]105 ; Tax (an HTLV-I oncoprotein)[ ]106 ; p53 (a tumor suppressor)[ ] 107

[ ] [ ]108 109 ; Fos (activator and repressor of transcription due to differential Fos phosphorylation)[ ]110 ; 
Retinoic-acid receptors and Thyroid- hormone[ ]111 ; Retinoic acid receptors (RARs) and 
retinoid-X receptors (RXRs) (activate or repress transcription by binding as heterodimers to 
DNA-response elements that generally consist of two direct repeat half-sites of consensus 
sequence AGGTCA.  Ligand-dependent transactivation by RAR on DR + 5 elements requires 
the dissociation of a new nuclear receptor co-repressor, N-CoR, and recruitment of the putative 
co-activators p140 and p160)[ ]112

Dr. Schneider writes:  ‘Lrp [the leucine-responsive regulatory protein] binds to multiple sites 
in a number of operons, including dad, fanABC, papBA and ilvIH. Leucine can invoke either 
positive or negative transcriptional control by Lrp.’[ ]84 ‘Lrp is known to both activate and 
repress transcription, so sequence logos for both Lrp activation and repression sites were 
made.  There are no major differences observed between the sequence characteristics or 
activation and repression sites, except for more strongly conserved bases at the -10, -9, -2, -1 
and +6 positions in the activation logo and a more strongly conserved A at the +2 position and 
T at the -4 and +12 positions in the repression logo.’[ ]84

27 E.coli Lrp binding sites were identified, which act on a large number of different genes or 
operons[ ]84 .  Of these, Lrp had an activation effect in 17 cases and a repression effect in 9 cases 
(for trxB the effect was not known). 

 

‘We found that we could not predict repression versus activation.  The failure of this bootstrap
test, for all sites, suggests that either the activation and repression sites are essentially identical 
or that more examples are needed to distinguish between them.’[ ]84   [RETURN TO TEXT]

(20) SREBPs, Sterol Regulatory Element-Binding Proteins (regulated by SCAP cleavage-
activating protein which forms complexes with SREBPs in membranes of the endoplasmic 
reticulum (ER).  In sterol-depleted cells, SCAP facilitates cleavage of SREBPs by Site-1 
protease, thereby initiating release of active NH(2)- terminal fragments from the ER membrane 
so that they can enter the nucleus and activate gene expression)[ ]113 ; Sphingomyelinase (balance 
between cholesterol and sphingomyelin regulated by proteolytic cleavage of SREBPs. 
Sphingomyelinase causes a fraction of cellular cholesterol to translocate from the plasma 
membrane to the endoplasmic reticulum. Sphingomyelinase prevents the nuclear entry of 
sterol regulatory element binding protein-2 (SREBP-2))[ ]114 .  [RETURN TO TEXT]



(21) There are other interesting examples.  Multiple forms of the chicken estrogen receptor-
alpha protein (ER-alpha) are transcribed from a specific promoter that is located in the region 
of the previously assigned translation start site.  The resulting cER-alpha forms I and II differ 
in their ability to modulate estrogen target gene expression in a promoter- and cell type-
specific manner.[ ]115

Four different cER alpha mRNA isoforms are under the control of four different promoters in 
chicken tissues to modulate the levels of expression of the chicken ER alpha gene in a tissue-
specific and/or developmental stage-specific manner.[ ]116

Splicing exons to produce the proper isoforms can be controlled according to type of tissue, 
such as reported for the three variants of GPDH.[ ]117   [RETURN TO TEXT]

(22) The transcription factor OxyR, can sense elevated levels of hydrogen peroxide and induce 
the expression of a transcript encoding another transcription factor Fur, raising its 
concentration from about 5,000 molecules/cell in E. coli to about 10,000 after oxidative 
stress[ ]118 .  This contrasts with concentrations of other transcription factors in E. coli, such as 
about 10 to 20 copies of the LacI repressor and 50 to 300 copies of the Trp repressor[ ]86 per 
cell.[ ]118  Note that there are on the order of one billion proteins molecules in total distributed 
throughout cells. 

‘The previously identified 9.9 bit Fis site at -66 overlaps Xis site 2... Fis is involved in both 
integrative and excisive recombination and will stimulate excision when the concentration of 
Xis is low.  Fis binding to the 9.9 bit site excludes Xis binding at Xis 2 and stimulates Xis 
binding at Xis 1.’[ ]81   [RETURN TO TEXT]

(22b) ‘Therefore, at high concentrations H-NS can bind to DNA fragments in a nonspecific 
fashion, but at low concentrations it shows a clear binding preference for the proU regulatory 
region.’[ ]39 , p.6580. ‘At slightly higher H-NS concentrations, we found that also the 192 bp 
EcoRI-BglI fragment from p 651 (comprising proU sequences from +24 to +202 bp) was 
efficiently retarded’[ ]39 , p.6580 ‘When the H-NS concentration was further increased, both the 
933-bp fragment derived from the vector and the 992-bp fragment from pBK20 carrying the 
proU promoter were bound at the same protein concentration.’[ ]39 , p.6581 ‘We note that H-NS 
occupation of the extended binding region at the 5' end of proV begins at relatively low protein 
concentration (0.22 m), whereas the protection of the region around the proU - 35 sequence 
from Dnase I digestion requires a substantially higher H-NS concentration (6.2 m)’[ ]39 , p.6582 
‘When interpreting the H-NS footprinting data for the various promoters, one needs to consider 
that binding of H-NS to a particular target sequence is concentration dependent. This is 
illustrated by the more than 20-fold higher concentration of H-NS required to protect the G + 
C-rich region around the proU -35 sequence  

(-22 to -29 bp) in comparison to the highly A + T-rich extended H-NS binding region at the 
beginning of the proV gene (+64 to +109 bp)’[ ]39 , p.6584  [RETURN TO TEXT]

(22c) Proteins do not always bind exclusively at DNA sequences of the same length. ‘We 
carried out an additional footprinting experiment with a DNA fragment (fragment III) that



allowed us to monitor H-NS binding to sequences upstream of the proU promoter. Again, 
several protect regions with variable size and spacing were visible.’[ ]39 , p.6582 [emphasis 
added] ‘However, a striking feature of all the DNA segments protected by H-NS is their high 
A + T content and the presence of uninterrupted stretches of 5 or more A• T base pairs.’[ ]39 , 
p.6582  [RETURN TO TEXT]

(23) ‘Another difficulty with this kind of experiment is that it always contains at least one 
unknown parameter, the stringency of selection.  If the concentration of OxyR protein were 
large, then its non- specific binding should cause more DNA sequences to shift in the gel. This 
would lead to a sequence logo with low information content relative to the natural sequences. 
However, a low concentration of OxyR protein should lead to a much higher measured 
information content, perhaps higher than is naturally found.’[ ]83   [RETURN TO TEXT]

(24) Examples:  low-level increase in proteolipid protein (Plp) gene expression (causes CNS 
disease)[ ] [ ]70 119 ; peripheral myelin protein-22 (PMP22)[ ]120 ; beta-globin-gene (underexpression is 
also worthless)[ ]46 ; flies overexpressing hop cause ectopic wing veins and duplications, eye 
defects and melanotic tumors[ ]121 ; frequenin in Drosophila[ ]72 ; PAI-1 (mice which lack or 
overexpress revealed a correlation between the level of PAI-1 and the extent of lung fibrosis 
after injury)[ ]122 .  That a minimal amount of mRNA is needed to be biologically detectable is 
apparent, but even small decreases from the required may be no better than none.  Tumorous 
cellular proliferation is prevented via interference of the UBF transcription factor by pRb. Too 
much UBF factor (or too little pRb) does not prevent transcription activity[ ]38 . 

‘Because Fis bends DNA when it binds, the multiple DNA contortions might exclude RNA 
polymerase and silence transcriptional initiation.  As levels of Fis protein decrease in the cell, 
the physical blockage would be relieved and transcription could proceed again.’[ ]88   
[RETURN TO TEXT]

(25) Yockey has shown[ ] [ ]123 124  that the number of synonymous codons allows a reasonable 
estimate of amino acid frequencies (limiting coding of arginine to only codons AGA and 
AGG).  Experimental data based on known residues reported by other authors was reported[ ]123

to establish the relative distribution of amino acids. The average Shannon information was 
determined to be about 4.153 bits/residue for proteins as a whole. This figure does not take 
into account structurally similar amino acids at various positions which would allow a protein 
to perform its intended function, and thus is an upper limit. 

The protein sequences of all known cytochrome c were collected to identify possible 
alternative synonyms at each position. A sequence of length 110 amino acids was used after 
excluding those positions for which some organisms lacked an amino acid there[ ]147 .  
[RETURN TO TEXT]

 

 

 



 

(26)  

• Evolution cannot know in advance the length the new protein is supposed to be, so the 
stop codon needs to be suitably located to generate a protein which is neither too short 
nor long.  

• Non-translated binding sequences, whose position can vary greatly according to gene, 
need to be available to allow transcription to be regulated. For example, translation of 
the GluR-B gene appears to initiate approximately 430 nucleotides upstream of the 
translational start codon, with no intron in the 5'-untranslated region of the gene[ ]125 .  

• Other proteins involved in regulating transcription must already be available and 
located in the nucleus.  Transcriptional initiation in eukaryotes as a rule requires the 
ordered assembly of a large number of protein factors into a functional preinitiation 
complex[ ] [ ]126 127 .  In addition, untranslated regions of mRNA upstream (5'UTR) and 
downstream (3'UTR) of the open reading frame, and the mRNA precursor can carry 
important regulatory sequences[ ]128   

• The estimated polypeptide possibilities[ ] [ ] [ ]55 56 147 , is based on Shannon’s formula, 
  
          2nH = 2(n X 4.153) 
  
where n refers to the number of residues; this excludes a very large number of 
possibilities based on sequences which use many residues of lower probability.  

• Removing introns correctly is not taken into account.  The GluR-B gene spans more 
than 90 kilobase pairs and harbors 17 exons.  Four alternatively spliced mRNAs are 
generated from the primary GluR-B transcript[ ]125 .  

• Whether all protein variability found across all organisms would be acceptable in 
finding the first one, by trial and error, with measurable functionality, is unlikely[ ]82 .  
For example, ribosomal gene transcription is markedly species specific since the RNA 
polymerase I transcription apparatus relies on different promoter-recognition 
properties.  

The extreme intolerance of some enzymes to alternative residues has been documented[ ] [ ]57 58 . 
From the abstract of the latter reference:  ‘The amino acid sequences of enzymes like alcohol 
dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase are strongly conserved across 
all phyla.  We suggest that the amino acid conservation of such enzymes might be a result of 
the fact that they function as part of a multi-enzyme complex. The specific interactions 
between the proteins involved would hinder evolutionary change of their surfaces.’ It makes no 
sense to try developing each functional gene by random point mutations one after the other. 
Behe might consider these as also examples of “irreducible complexity”.  [RETURN TO TEXT]  

(27) Each time a letter which lines up correctly to the pre-arranged target, ‘Methinks it is like a 
weasel’ showed up, that ‘parent’ became flawlessly the starting point for n offspring, each of 
which are allowed to improve in the pre-targeted direction. If no additional matches showed 
up, the parent sequence was retained, and a fresh crop of offpring was given another 



allowed.  Of all offspring, the one which made the most progress towards the sentence already 
stored in the computer was always retained as the new ancestor.[ ]129   [RETURN TO TEXT]

(28) ‘First, selection in nature is not perfect... When selection is weaker, the substitution 
requires more time.  Second, beneficial mutations are not easily produced.  They are rare. A 
population of 100,000 is not likey to receive a major one every generation.  Third, the effect of 
harmful mutations has not been counted. These must be eliminated by differential survival, 
and this raises the cost of the process. Fourth, time was not deducted for periods when the 
population is stuck on a local fitness peak, undergoing little if any change.’[ ]64   [RETURN TO TEXT]

(29) ‘There are thousands of examples of convergence that I could give...One amazing 
example of convergence is the ultrasonic echolocation systems (like sonar) found in animals 
scattered through the vertebrate phylum... Bats have an echolocation system, and so do 
toothed whales and dolphins.  The system is also found in some birds.  According to the 
experts, these systems could not all have been derived from a common ancestor...South-
American electric fish and African electric fish both “see” in dark murky water by measuring 
the distortion of the electostatic fields they generate in the water around them.  These two 
groups of fish are believed to have developed their electrostatic-imaging systems 
independently.’[ ]130   [RETURN TO TEXT]

(29b) Striking examples of molecular convergence have been pointed out[ ]131 :  in fish antifreeze 
proteins[ ]132 , cytokinases[ ]133 , and apolipoproteins[ ]134 . At a higher functional level there are 
many examples:  unrelated fish (Eigenmannia and Gymnarchus) which produce electric signals 
to confuse predators[ ] [ ]135 136 ; remarkably similar structure of receptors between arthropods and 
vertebrates based on different binding proteins[ ]137 .  [RETURN TO TEXT]

(30)  

• The origin of the code and decoding apparatus is neglected. The later has many 
properties worthy of technical analysis and incompatible with chance origin  

• The mathematics handles properties of coded messages and not the outcome. Coded 
information systems can be set up to require more or less input from a coded message 
to achieve the same goal.  For example, a collection of 20 amino acids which is to 
produce a functional protein must indeed be placed in an acceptable sequence. But 
intramolecular reactions between the amino and carboxyl ends of the same chain must 
be precluded during the polymerization process. One could either design the decoding 
apparatus to prevent this possibility (as ribosome’s geometry does) or more complex (= 
greater Shannon information content) messages are needed to unambiguously specify 
the desired outcome from among a now greater range of undesired possibilities. Also, 
since the peptide bonds used by proteins are generated only about half the time under 
unconstrained chemical reactions of amino acids, the decoding apparatus must either 
prevent this also (as ribosome does) or a yet more demanding coding scheme (more bits 
to specify intended outcome) would be needed to provide the necessary guiding 
intructions.  

 



 

• All coded information systems work in a specific context, where much can be assumed 
without the need for clarification in the form of longer messages.  The genetic code 
“knows” the t-RNA will already be optically pure[ ]138 ; that water and other interfering 
chemicals will be excluded (the message does not need to guide processes to ensure 
this).  

• By ‘information’ a biologist has an intuition along the lines of “that which guides 
behavior to produce chemically and physically unexpected results", such as instincts 
(e.g. eel migration; nest building; mating); cooperative efforts (e.g., the foraging bee’s 
waggle dance; pheromones); and the production of novel structure (e.g., eyes, blood 
circulation).  

• According to Dr. Scheider, total information at a position x of a gene is its ‘surprisal’ 
upon determining which base is found there.  The surprisal notion is given by:  
  

        Rsequence(x) = H(x)max - H(x)  
  

where H(x)max bits refer to the 4 possibilites (a,c,g or t) being of identical probability.  
• This can be modified in several ways which have no relevance to what one is thinking 

about when using the word ‘information’:  

 

a. Errors which allow new bases to appear or existing ones to be modified on the 
genome would increase H(x)max. Even if a specific gene is not be affected, total 
information supposedly increases.  

b. Should a catastrophy spare a portion of a colony living in a small region, like 
the immediate relatives of a recent ancestor, the variability of bases at a given 
position will be less, implying these and their ancestors would automatically 
have a greater information content, even though the variety of that gene/allele 
may be of biological lower “quality” than for the original population.  

• Increasing the length of a gene with junk would always lead to more total Shannon 
information  

• A small gene producing a protein with many biological functions would have less 
Shannon information than a larger one with a single function  

  [RETURN TO TEXT]  

(31) ‘Second, most of the signaling and regulatory genes known or expected to be involved in 
multicellularity have no yeast orthologs, even though they may contain domain sequences 
shared with yeast.  Thus, virtually all biological processes characteristic of multicellular life 
are performed by proteins that are not close variants of proteins responsible for the core 
processes, even though they might share some domains.’ [ ]13  p. 2027. 

 

 



Biologically usable polypeptides are only a small subset of possible true proteins, given the 
need for proper folding and other constraints to be useful. Repeated use of common themes 
across unrelated proteins, especially those for which no plausible common ancestry can be 
proposed, is consistent with the view intelligent agency was involved.  This view is 
particularly persuasive when one realizes many protein domains, which display very little 
variability in all their positions, can consist of chains 200 - 300 amino acids long.  
[RETURN TO TEXT]

Table 1. Lengths (L) and number ( ) of some reported binding sites. 

Factor Binding 
Length, L 

Number in 
genome, γ Ref.  

c-Jun  4  Not reported (59)  
HaeIII  4  Not reported (139)  
EcoRI  6  Not reported (27)  
GATA-1  6  Not reported (3)  
Sp1  6  Not reported (3), (59)  
CTF/NF-1  6  Not reported (59)  
RNA polymerase II (TATA 
box)  

6  Not reported (34)  

AP-2  8  Not reported (59)  
CREB  8  Not reported (59)  
OCT-1; OCT-2  8  Not reported (3), (59)  
GCN4  9  Not reported (3)  
C/EBP  9  Not reported (59)  
bicoid  9  Not reported (3)  
MAT ∝2  9  Not reported (3)  
Krüppel  10  Not reported (3)  
human donor splice junctions  10  Not reported (74)  
Symmetry  14  Not reported (139)  
GR  15  Not reported (59)  
CAP  16  Not reported (3)  
Lambda repressor  17  Not reported (3)  
GAL4  17  Not reported (3)  
CI/Cro  19  12  (139)  
LexA  20  22  (139)  
SRF     Not reported (59)  
ArgR  20  22  (139)  
Lac repressor  21  Not reported (3)  
Fis  21  Not reported (88)  
human acceptor splice 
junctions  

28  Not reported (74)  

TrpR  38  6  (139)  
RNA Pol  42  83  (139)  
LacI  43  2  (139)  



Ribosome  45 
40  

2574 
Not reported 

(139) 
(74)  

OxyR  45  Not reported (83)  
H-NS  46  Not reported (39)  
HincII  51  Not reported (139)  

Table 2. Scoring Matrix implied in [1] to evaluate binding interactions.  

Pos. A C G T Comments

#1 tcttt gcacg ctaag Tttgt 

#2 cagga attgt aaaca Cctaa 

#3 tccgt ccatg atttg Tctga 

#4 cctac attgt tggac Gagaa 

#5 gctca tcggg tatgc cagcg 

#6 gggct ggacg gtcaa tggca 

The starting random 
weighting matrix 

  

#1  -0 10 00 00 01  -1 10 11 10 10  +1 11 00 00 10  -0 00 00 01 01

#2  +1 00 10 10 00  +0 11 11 10 11  +0 00 00 01 00  +1 01 11 00 00

#3  -0 10 10 01 01  +1 01 00 11 10  +0 11 11 11 10  -0 10 00 10 00

#4  +1 01 11 00 01  +0 11 11 10 11  -0 01 01 11 11  -1 11 10 00 00

#5  -1 10 00 11 00  -0 10 01 01 10  -0 11 00 01 11  +1 00 10 01 10

#6  -1 01 01 10 01  -1 01 11 10 10  -1 00 11 00 00  -0 01 01 11 00

Two’s complement 
based on: 
  
 A = 00 
 C = 01 
 G = 10 
 D = 11 

  

#1 -129 -442 450 -5 

#2 296 251 4 368 

#3 -165 334 254 -136 

#4 369 251 -95 -480 

#5 -396 -150 -199 294 

#6 -346 -378 -304 -92 

Example: 
  
catctt scores as: 
(-422+296-136+251+294-92) 
(=171,>-58, the cutoff score) 

Table 3. Synonyms after a single point mutation. 

Amino 
Acid  

Coding Codons           Number of 
synonyms 

                   
Ala  GCA GCC GCG GCU  GCA: 3  GCC: 3  GCG: 3 GCU: 3     12 

Arg  AGA AGG CGA CGC CGG CGU  AGA: 2  AGG: 2  CGA: 4  CGC: 3  CGG: 4 CGU: 3  18 



Asx  AAC AAU  AAC: 1  AAU: 1       2 

Asp  GAC GAU  GAC: 1  GAU: 1       2 

Cys  UGC UGU  UGC: 1  UGU: 1       2 

Gln  CAA CAG  CAA: 1  CAG: 1       2 

Glu  GAA GAG  GAA: 1  GAG: 1       2 

Gly  GGA GGC GGG GGU  GGA: 3  GGC: 3 GGG: 3 GGU: 3    12 

His  CAC CAU  CAC: 1  CAU: 1       2 

Ile  AUA AUC AUU  AUA: 2  AUC: 2  AUU: 2      6 

Leu  CUA CUC CUG CUU UUA UUG  CUA: 4  CUC: 3  CUG: 4  CUU: 3  UUA: 2  UUG: 2  18 
Lys  AAA AAG  AAA: 1  AAG: 1       2 

Met  AUG  AUG: 0          0 

Phe  UUC UUU  UUC: 1  UUU: 1       2 

Pro  CCA CCC CCG CCU  CCA: 3  CCC: 3  CCG: 3  CCU: 3     12 

Ser  AGC AGU UCA UCC UCG UCU  AGC: 1  AGU: 1  UCA: 3  UCC: 3  UCG: 3  UCU: 3  14 
Thr  ACA ACC ACG ACU  ACA: 3  ACC: 3  ACG: 3  ACU: 3     12 

Trp  UGG  UGG: 0         0 

Tyr  UAC UAU  UAC: 1  UAU: 1       2 

Val  GUA GUC GUG GUU  GUA: 3  GUC: 3  GUG: 3 GUU: 3     12 

Stop  UAA UAG UGA  UAA: 2  UAG: 1  UGA: 1      4 

            Synonyms:  138 

            138 / (64*9) =  0,24 

Table 4. The Population of mRNA Molecules in a Typical Mammalian Cell.[47]

   Copies per Cell 
of Each mRNA 

Sequence  

Number of Different 
mRNA Sequences in 

Each Class  

Total Number of 
mRNA Molecules 

in Each Class  
Abundant class  12,000 4 48,00 
Intermediate class  300 500 150,000 
Scarce class  15 11,000 165,000 

Most mRNA species are present at a low level (5 to 15 molecules per cell) (47) 

Table 5. Number of proteins for which domains are not shared by C. elegans and S. cerevisiae 
(from [84]) * 

Domain Description Yeast Worm 
   Domains found only in the worm        
PTB  Phosphotyrosine binding domain  0 11 
NHR  Transcription factors with ligand and DNA binding Zn-

finger domains  
0 270 

EGF  Calcium-binding, seen in epidermal growth factor, etc.  0 135 
Degenerins  Amiloride-sensitive Na+ channels  0 28 
T-box  DNA-binding domain of transcription factors  0 21 
FMRFamides Neuropeptides  0 20 
Cadherin  Calcium-dependent cell adhesion module  0 18 



Paired box  DNA-binding domain with 2 helix-turn-helix (HTH) 
units  

0 18 

SMAD  Transcription factors  0 8 
Insulin-like 
peptides  

Peptide hormones  0 7 

Laminin NT  N-terminal globular domain of the extracellular matrix 
protein laminin  

0 5 

   Domains found only in yeast     
APSES  A fungal-specific DNA-binding domain, seen in Swi4p  6 0 
C6  A fungal-specific binuclear Zn-binding cluster  54 0 

* Number of proteins containing the given domain in on organism but the other. 

Appendix 

Binding sites are defined on Schneider’s web site[ ]1 as: ‘The place a protein (or macromolecular complex) binds on a 
nucleic acid.  A classic example is the set of binding sites for the bacteriophage Lambda Repressor (cl) protein.’ 

‘For example, a set of ribosome binding sequences can be aligned at the translational initiation point.’[ ]73 Repressors, 
polymerases, ribosomes and other macromolecules can identify and bind to specific nucleic acid sequences.[ ]139

A weight matrix is built by aligning at the binding site a collection of nucleotide sequences, using only examples 
with proven biological effects (this can also be done with amino acids on proteins). The frequency, or proportion, of 
each base, A,C,G or T, at each nucleotide is determined from the experimental data. 

Example of weight matrix calculations as done with real experimental data[140]: A) the jth sequence matrix, s(b,l,j) 

base b                       
   C  A  G  G  T  C  T  
   -3  -2  -1  0  1  2  3  
A  0  1  0  0  0  0  0  
C  1  0  0  0  0  1  0  
G  0  0  1  1  0  0  0  
T  0  0  0  0  1  0  1  

 

 

 

 

 



B) individual information weight matrix, Riw(b,l) 

Base b                       
   -3  -2  -1  0  1  2  3  
A  +0.42  +1.25  -1.41  -∞  -5.81 +1.12 +1.51 
C  +0.58  -0.78  -2.40  -7.81  -5.49 -3.68  -1.56 
G  -0.58  -1.04  +1.64  +1.99  -6.23 +0.72 -1.06 
T  -1.02  -0.87  -1.67  -5.81  +1.98 -3.38 -1.59  
   C  A  G  G  T  C  T  

The sequence 5' CAGGTCTGCA 3' represented in matrix format. There is only one “1” in each column, marking 
the base at that position.  The remainder of the column is filled with “0”s. B) The individual weight matrix for 
human donor splice junctions derived from data given in[ ]141 . The weights of the matrix in B that are selected by the 
sequence in A are enclosed in boxes. Fig. 1.  Matrix representation of a sequence and a sequence recognizer.[ ]140

In (17), average amount of information, R, is defined as the uncertainty of the receiver before receiving symbols 
minus the uncertainty after reception: 

      R = Hbefore - Hafter (bits per symbol)  

‘For protein binding on a nucleic acid, the before state is the recognizer unbound or nonspecifically bound and the 
after state is it being specifically bound.’[ ]88

Shannon defines information as equivalent to the entropy, H, of the probability space containing the events, i: 

 

Yockey has recently provided an excellent discussion[ ]124
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